PanoPR(Spheriverse): A Panoramic Dataset for Pan-Regional Street Scene Understanding

tengfei, AAA, BBB, CCC

Demo

视频标题 1

这里是视频1的说明文字。可以简要描述视频内容或放置相关链接。

视频标题 2

这里是视频2的说明文字。可以简要描述视频内容或放置相关链接。


Abstract

Panoramic vision, with its unparalleled 360\textdegree{} environmental perception, provides intelligent systems with a holistic visual understanding of complex scenes. However, due to the lack of diverse and standardized datasets and benchmarks, existing panoramic scene parsing studies remain largely constrained on limited domain, leaving the full potential of panoramic vision for comprehensive understanding underexplored.

To bridge this gap, we present Spheriverse-V1, a diverse panoramic perception dataset tailored to facilitate systematic investigations into panoramic street-view scene understanding. Spheriverse-V1 features: (1) Diverse coverage across urban, suburban, and rural environments with full-day (0–24h) data collection; (2) Multi-task benchmarks including Occupancy Prediction, BEV Perception, and Point Cloud Segmentation; (3) Cross-domain evaluation revealing the challenges and generalization limits of existing perception methods in real-world diverse scenarios; and (4) Comprehensive support through standardized data structures, statistical analyses, and develop tools to facilitate community-driven exploration. Overall, Spheriverse-V1 include xx images and xx sequence, establishes a solid foundation for panoramic street scene parsing and opens new avenues toward unified perception, full-space comprehension, and cross-domain intelligent sensing.
The resources, benchmarks, and toolkits will be made publicly available.


Introduction

本数据集 Spheriverse-V1 包含多模态全景图像、对应点云与精细标注,旨在为全景街景场景理解、BEV 感知与跨域评估提供标准化的数据与基准。

采集说明:由 SDHS 团队于 2019–2023 年间采集,覆盖城市、郊区与乡村,采集时段涵盖全天(0–24h)。采集设备包括全景相机与车载 LiDAR,配套 GPS/IMU 用于位姿标定。

数据统计(示例):约 XX,XXX 张全景图像,YYY 条序列,总数据量约 ZZZ GB;采集与标注耗时约 NNN 人·天。

更多细节与反馈请见我们的 GitHub 仓库,欢迎社区使用并反馈改进建议。 安装与使用说明请看 教程

你想写点啥都可以

本站访问量
Modified by losehu